3857 measured reflections 1937 independent reflections

 $R_{\rm int} = 0.014$

1881 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis(sulfolane- κO)di- μ_2 -thiocyanatocadmium(II)]

Xin-Qiang Wang,^a* Jian-Dong Fan,^a Wen-Tao Yu,^a Dong Xu^a and Wei-Liang Liu^b

^aState Key Laboratory of Crystalline Materials, Institute of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China, and ^bSchool of Materials Science and Engineering, Shandong Institute of Light Industry, Jinan 250100, People's Republic of China

Correspondence e-mail: xqwang@icm.sdu.edu.cn

Received 1 April 2007; accepted 5 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.056; data-to-parameter ratio = 20.0.

In the title complex, $[Cd(SCN)_2(C_4H_8O_2S)_2]_n$, the Cd^{II} atom, on an inversion centre, is within a distorted N₂S₂O₂ octahedron and the five-membered ring has a distorted envelope conformation. In the crystal structure, neighbouring Cd atoms are connected by –SCN– bridges, leading to the formation of an infinite three-dimensional –Cd–NCS–Cd– network.

Related literature

For related literature, see: Chenskaya *et al.* (2000); Lipkowski (1990); Ouchi & Taniguchi (1988); Ozutsmi *et al.* (1989); Pearson (1966); Shannon (1976); Taniguchi *et al.* (1986, 1987); Taniguchi & Ouchi (1987*a*,*b*); Wang *et al.* (2000); Yamaguchi *et al.* (1985); Zhu *et al.* (2006).

Experimental

Crystal data

$C_{1}(S_{1}(C_{1})) (C_{1} \cup C_{2}) $	$n = 04512(1)^{\circ}$
$Cu(SCN)_2(C_4\Pi_8O_2S)_2$	$\gamma = 94.312(1)$
$M_r = 468.89$	$V = 425.48 (5) \text{ A}^{3}$
Friclinic, $P\overline{1}$	Z = 1
a = 5.9138 (1) Å	Mo $K\alpha$ radiation
b = 8.5561 (2) Å	$\mu = 1.79 \text{ mm}^{-1}$
z = 9.4413 (2) Å	T = 294 (2) K
$\alpha = 115.246 \ (1)^{\circ}$	$0.31 \times 0.23 \times 0.19 \text{ mm}$
$\beta = 96.147 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2005) T_{min} = 0.585, T_{max} = 0.710

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	97 parameters
$wR(F^2) = 0.056$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
1937 reflections	$\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.251 (2)	C5-N1	1.147 (3)
Cd1-O2	2.4192 (17)	C5-S2	1.644 (2)
Cd1-S2 ⁱ	2.6875 (11)		
N1-C5-S2	178.52 (17)	O2-Cd1-S2 ⁱ	89.81 (6)
N1 ⁱⁱ -Cd1-N1	180	N1-Cd1-S2 ⁱⁱⁱ	88.25 (6)
N1 ⁱⁱ -Cd1-O2	90.81 (7)	O2-Cd1-S2 ⁱⁱⁱ	90.19 (6)
N1-Cd1-O2	89.19 (7)	S2 ⁱ -Cd1-S2 ⁱⁱⁱ	180
$O2-Cd1-O2^{ii}$	180	C5-N1-Cd1	165.48 (15)
N1-Cd1-S2 ⁱ	91.75 (6)	C5-S2-Cd1 ^{iv}	101.40 (7)
S1-C1-C2-C3	37.9 (2)	C2-C3-C4-S1	35.0 (3)
C2-C1-S1-C4	-15.3(2)	C3-C4-S1-C1	-11.2(2)
C1-C2-C3-C4	-48.4 (3)		

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Foundation for the Authors of National Excellent Doctoral Dissertations of China (grant No. 200539) and the National Natural Science Foundation of China (grant Nos. 60476020, 60608010 and 50672049).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2227).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chenskaya, V., Virovets, A. V., Gromilov, S. A., Podberezskaya, N. V. & Cherkasova, T. G. (2000). *Inorg. Chem. Commun.* **3**, 482–485.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lipkowski, J. (1990). J. Coord. Chem. 22, 153-158.
- Ouchi, A. & Taniguchi, M. (1988). Bull. Chem. Soc. Jpn, 61, 3347-3349.
- Ozutsmi, K., Takamuku, T., İshiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, **62**, 1875–1879.
- Pearson, R. G. (1966). Science, 151, 172-177.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Taniguchi, M. & Ouchi, A. (1987a). Bull. Chem. Soc. Jpn, 60, 1192-1194.

- Taniguchi, M. & Ouchi, A. (1987b). Bull. Chem. Soc. Jpn, 60, 4172– 4174.
- Taniguchi, M., Sugita, Y. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299– 2302.
- Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321– 1326.
- Wang, X. Q., Yu, W. T., Xu, D., Yuan, D. R., Lu, M. K., Tian, Y. P., Yang, P., Meng, F. Q., Guo, S. Y. & Jiang, M. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 91–92.
- Yamaguchi, T., Yamamoto, K. & Ohtaki, H. (1985). Bull. Chem. Soc. Jpn, 58, 3235–3241.
- Zhu, L. Y., Xu, D., Wang, X. Q., Liu, X. J., Zhang, G. H. & Sun, J. (2006). Cryst. Res. Technol. 41, 1226–1230.

supplementary materials

Acta Cryst. (2007). E63, m1461-m1462 [doi:10.1107/S1600536807016984]

Poly[bis(sulfolane-A)di-42-thiocyanato-cadmium(II)]

X.-Q. Wang, J.-D. Fan, W.-T. Yu, D. Xu and W.-L. Liu

Comment

A variety of polymeric structures of the monometallic thiocyanates of the IIB metals and of their Lewis base adducts are interesting themes of structural chemistry and nonlinear optics (Lipkowski, 1990; Wang, *et al.*, 2000; Chenskaya *et al.*, 2000; Zhu *et al.*, 2006). According to the hard and soft acids and bases (HSAB) theory (Pearson, 1966), cadmium is a rather soft metal, although its softness is less than that of mercury or lead. Therefore, it is expected that the N and S atoms of the thiocyanate ion are able to bond easily with Cd, and that SCN-bridged polymeric complexes are stable (Yamaguchi *et al.*, 1985; Taniguchi *et al.*, 1986, 1987; Taniguchi & Ouchi, 1987a,b; Ouchi & Taniguchi, 1988; Ozutsmi *et al.*, 1989). In the present work, the title sulfolane adduct of Cd(SCN)₂, (I), has been characterized.

In (I), the Cd^{II} atom is within a distorted N₂S₂O₂ octahedron (Fig. 1). The Cd—N, Cd—O and Cd—S bonds are shorter, longer and shorter, respectively, than the sums of the ionic radii, *i.e.* 2.41, 2.30 and 2.79 Å, respectively (Shannon, 1976). The bond angles (Table 1) deviate significantly from ideal octahedral geometry. The C—N—Cd and C—S—Cd bond angles (close to 180° and 90°, respectively) show that the these groups are quasi-linear and significantly bent, respectively.

The five-membered S1/C1-C4 ring is not planar, having a distorted envelope conformation, with C2 as the flap atom displaced by 0.589 (3) Å from the mean plane of the other four atoms. It has also a pseudo twofold axis passing through atom S1 and the mid-point of the C2—C3 bond, as evidenced by the torsion angles (Table 1).

In the crystal structure, neighbouring Cd atoms are connected by –SCN– bridges, which leads to the formation of an infinite three-dimensional –Cd—NCS—Cd–network.

Experimental

Cd(SCN)₂ was prepared by the reaction of Cd(NO₃)₂.4H₂O (6.170 g, 20 mmol) and NH₄SCN (3.045 g, 40 mmol) in water (6 ml). The crystalline powder of Cd(SCN)₂ (3.438 g, 15 mmol) was dissolved in water (50 ml) at about 313 K, and then sulfolane (2.5 ml) was added. The mixture was left standing at room temperature, yielding colourless crystals of (I) suitable for X-ray vrystal structure analysis. IR (Nicolet 20 SX FTIR spectrometer; cm⁻¹): 2945.88 and 2878.38 [v(CH)], 2107.92 and 2078.99 [v(CN)], 1447.39, 1409.78, 1384.71, 1290.21 and 1254.53 [δ (HCH)], 1204.39, 1145.57, 1108.92, 1086.75, 1031.78, 991.28, 672.10, 570.85 and 516.85 [v(SO)], 967.17 and 907.39 [2 δ (SCN)], 735.75[v(CS)], 465.75, 418.50 and 407.89 [δ (SCN)]. Raman (NXR FT-Raman spectrometer using InGaAs laser at 1064 nm, cm⁻¹): 3008.5, 2977.6 and 2947.9 [v(CH)], 2107.0 [v(CN)], 1450.5, 1253.0 [δ (HCH)], 1132.8, 1095.2, 1073.9, 1026.2, 666.5 and 561.5 [v(SO)], 967.0 and 877.3 [2 δ (SCN)], 777.9 and 734.0 [v(CS)], 476.9 and 444.9 [δ (SCN)], 385.5 [v(CdN)], 260.9 [v(CdO)], 193.7, 161.7 and 129.0 [v(CdS)].

Refinement

H atoms were positioned geometrically, with C—H = 0.97 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A fragment of the polymeric structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms N1A, O2A, S2A and S2B are at the symmetry positions (1 - x, -y, 1-z), (1 - x, -y, 1 - z), (x - 1, y, z) and (2 - x, -y, 1 - z), respectively.

$Poly[Bis(sulfolane{-}\kappa O)di{-}\mu_2{-}thiocyanato{-}cadmium(II)]$

Crystal data	
$[Cd(SCN)_2(C_4H_8O_2S)_2]$	Z = 1
$M_r = 468.89$	$F_{000} = 234$
Triclinic, <i>P</i> Ī	$D_{\rm x} = 1.830 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
<i>a</i> = 5.9138 (1) Å	Cell parameters from 3568 reflections
b = 8.5561 (2) Å	$\theta = 2.4 - 27.6^{\circ}$
<i>c</i> = 9.4413 (2) Å	$\mu = 1.79 \text{ mm}^{-1}$
$\alpha = 115.246 (1)^{\circ}$	T = 294 (2) K
$\beta = 96.147 (1)^{\circ}$	Prism, colourless
$\gamma = 94.512 (1)^{\circ}$	$0.31 \times 0.23 \times 0.19 \text{ mm}$
$V = 425.48 (2) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	1937 independent reflections
Radiation source: fine-focus sealed tube	1881 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 294(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 6$

(APEX2; Bruker, 2005) $T_{min} = 0.585$, $T_{max} = 0.710$ 3857 measured reflections

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.020$

 $wR(F^2) = 0.056$

S = 1.08

1937 reflections

97 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Experimental. IR (Nicolet 20 SX FTIR spectrometer; cm⁻¹): 2945.88 and 2878.38 [v(CH)], 2107.92 and 2078.99 [v(CN)], 1447.39, 1409.78, 1384.71, 1290.21 and 1254.53 [δ(HCH)], 1204.39, 1145.57, 1108.92, 1086.75, 1031.78, 991.28, 672.10, 570.85 and 516.85 [v(SO)], 967.17 and 907.39 [2δ(SCN)], 735.75[v(CS)], 465.75, 418.50 and 407.89 [δ(SCN)]. Raman (NXR FT-Raman spectrometer using InGaAs laser at 1064 nm, cm⁻¹): 3008.5, 2977.6 and 2947.9 [v(CH)], 2107.0 [v(CN)], 1450.5, 1253.0 [δ(HCH)], 1132.8, 1095.2, 1073.9, 1026.2, 666.5 and 561.5 [v(SO)], 967.0 and 877.3 [2δ(SCN)], 777.9 and 734.0 [v(CS)], 476.9 and 444.9 [δ(SCN)], 385.5 [v(CdN)], 260.9 [v(CdO)], 193.7, 161.7 and 129.0 [v(CdS)].

 $k = -10 \rightarrow 11$

 $l = -12 \rightarrow 12$

H-atom parameters constrained

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.017$

 $\Delta \rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

 $w = 1/[\sigma^2(F_0^2) + (0.0333P)^2 + 0.1407P]$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.5000	0.0000	0.5000	0.03334 (8)
S1	0.31205 (8)	0.13344 (6)	0.20978 (6)	0.03717 (11)
S2	1.32208 (8)	0.25374 (7)	0.72442 (6)	0.04356 (13)
01	0.2601 (3)	-0.0393 (2)	0.0826 (2)	0.0583 (4)
O2	0.4885 (3)	0.1593 (2)	0.3410 (2)	0.0489 (4)
N1	0.8515 (3)	0.1461 (2)	0.6227 (2)	0.0418 (4)

supplementary materials

C1	0.0585 (4)	0.2137 (3)	0.2838 (3)	0.0474 (5)
H1A	-0.0782	0.1404	0.2130	0.057*
H1B	0.0545	0.2189	0.3882	0.057*
C2	0.0768 (5)	0.3954 (3)	0.2911 (3)	0.0604 (6)
H2A	0.1752	0.4783	0.3875	0.072*
H2B	-0.0737	0.4329	0.2900	0.072*
C3	0.1777 (5)	0.3854 (3)	0.1473 (3)	0.0559 (6)
H3A	0.0662	0.3217	0.0518	0.067*
H3B	0.2221	0.5016	0.1571	0.067*
C4	0.3848 (4)	0.2918 (3)	0.1400 (3)	0.0507 (5)
H4A	0.5189	0.3727	0.2069	0.061*
H4B	0.4167	0.2357	0.0322	0.061*
C5	1.0453 (3)	0.1882 (2)	0.6641 (2)	0.0313 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01888 (11)	0.03835 (12)	0.04516 (12)	0.00468 (7)	0.00290 (7)	0.02091 (9)
S1	0.0352 (2)	0.0394 (2)	0.0443 (2)	0.01258 (19)	0.00901 (19)	0.0234 (2)
S2	0.0227 (2)	0.0446 (3)	0.0495 (3)	0.00226 (19)	0.00154 (19)	0.0089 (2)
O1	0.0628 (11)	0.0463 (8)	0.0592 (9)	0.0139 (8)	0.0077 (8)	0.0165 (7)
02	0.0399 (8)	0.0564 (9)	0.0595 (9)	0.0059 (7)	0.0001 (7)	0.0359 (8)
N1	0.0239 (8)	0.0412 (8)	0.0523 (9)	0.0050 (6)	0.0061 (7)	0.0129 (7)
C1	0.0368 (11)	0.0630 (13)	0.0554 (12)	0.0179 (10)	0.0174 (9)	0.0338 (11)
C2	0.0557 (15)	0.0549 (13)	0.0758 (16)	0.0272 (12)	0.0236 (13)	0.0273 (12)
C3	0.0543 (14)	0.0506 (12)	0.0758 (16)	0.0154 (11)	0.0105 (12)	0.0386 (12)
C4	0.0526 (13)	0.0558 (12)	0.0649 (13)	0.0190 (10)	0.0239 (11)	0.0410 (11)
C5	0.0281 (9)	0.0300 (8)	0.0364 (8)	0.0073 (6)	0.0075 (7)	0.0139 (6)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.251 (2)	C1—H1B	0.9700
Cd1—N1	2.251 (2)	C2—C3	1.513 (4)
Cd1—O2	2.4192 (17)	C2—H2A	0.9700
Cd1—O2 ⁱ	2.4192 (17)	C2—H2B	0.9700
Cd1—S2 ⁱⁱ	2.6875 (11)	C3—C4	1.507 (3)
Cd1—S2 ⁱⁱⁱ	2.6875 (11)	С3—НЗА	0.9700
S2—Cd1 ^{iv}	2.6875 (11)	C3—H3B	0.9700
O1—S1	1.4341 (19)	C4—S1	1.785 (2)
O2—S1	1.4580 (17)	C4—H4A	0.9700
C1—C2	1.521 (3)	C4—H4B	0.9700
C1—S1	1.785 (2)	C5—N1	1.147 (3)
C1—H1A	0.9700	C5—S2	1.644 (2)
C2-C1-S1	103.85 (16)	N1 ⁱ —Cd1—N1	180.00 (10)
C2-C1-H1A	111.0	N1 ⁱ —Cd1—O2	90.81 (7)
S1—C1—H1A	111.0	N1—Cd1—O2	89.19 (7)
C2—C1—H1B	111.0	N1 ⁱ —Cd1—O2 ⁱ	89.19 (7)

S1—C1—H1B	111.0	N1—Cd1—O2 ⁱ	90.81 (7)
H1A—C1—H1B	109.0	O2—Cd1—O2 ⁱ	180.0
C1—C2—C3	107.17 (19)	N1 ⁱ —Cd1—S2 ⁱⁱ	88.25 (6)
C1—C2—H2A	110.3	N1—Cd1—S2 ⁱⁱ	91.75 (6)
C3—C2—H2A	110.3	O2—Cd1—S2 ⁱⁱ	89.81 (6)
C1—C2—H2B	110.3	O2 ⁱ —Cd1—S2 ⁱⁱ	90.19 (6)
C3—C2—H2B	110.3	N1 ⁱ —Cd1—S2 ⁱⁱⁱ	91.75 (6)
H2A—C2—H2B	108.5	N1—Cd1—S2 ⁱⁱⁱ	88.25 (6)
C4—C3—C2	106.69 (19)	O2—Cd1—S2 ⁱⁱⁱ	90.19 (6)
С4—С3—НЗА	110.4	O2 ⁱ —Cd1—S2 ⁱⁱⁱ	89.81 (6)
С2—С3—НЗА	110.4	S2 ⁱⁱ —Cd1—S2 ⁱⁱⁱ	180.00 (2)
С4—С3—Н3В	110.4	C5—N1—Cd1	165.48 (15)
С2—С3—Н3В	110.4	S1—O2—Cd1	127.40 (10)
НЗА—СЗ—НЗВ	108.6	O1—S1—O2	116.68 (11)
C3—C4—S1	105.34 (16)	O1—S1—C4	111.75 (13)
С3—С4—Н4А	110.7	O2—S1—C4	108.46 (12)
S1—C4—H4A	110.7	01—S1—C1	111.28 (13)
C3—C4—H4B	110.7	O2—S1—C1	109.89 (12)
S1—C4—H4B	110.7	C4—S1—C1	96.99 (11)
H4A—C4—H4B	108.8	C5—S2—Cd1 ^{iv}	101.40 (7)
N1—C5—S2	178.52 (17)		
O2—Cd1—N1—C5	-101.9 (7)	C2—C1—S1—C4	-15.3 (2)
O2 ⁱ —Cd1—N1—C5	78.1 (7)	C2—C1—S1—O1	-131.90 (18)
S2 ⁱⁱ —Cd1—N1—C5	-12.1 (7)	C1—C2—C3—C4	-48.4 (3)
S2 ⁱⁱⁱ —Cd1—N1—C5	167.9 (7)	C2—C3—C4—S1	35.0 (3)
N1 ⁱ —Cd1—O2—S1	-5.53 (13)	C3—C4—S1—C1	-11.2 (2)
N1—Cd1—O2—S1	174.47 (13)	C3—C4—S1—O1	105.05 (19)
S2 ⁱⁱ —Cd1—O2—S1	82.72 (13)	C3—C4—S1—O2	-124.95 (19)
S2 ⁱⁱⁱ —Cd1—O2—S1	-97.28 (13)	Cd1—O2—S1—O1	-54.85 (16)
S1—C1—C2—C3	37.9 (2)	Cd1—O2—S1—C4	177.92 (11)
C2-C1-S1-O2	97.29 (18)	Cd1—O2—S1—C1	73.02 (15)
		· · · · · · · · · · · · · · · · · · ·	

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z.

